
MENU

JavaScript Null &
Undened
25 OCTOBER 2015 on javascript, types

Today will be a shorter post to touch on the types null and

undefined . These are sometimes referred to as non-values .

undefined and null are both the type and value. They are to be

treated as empty or 'non' values. Specically, null is a

JavaScript literal representing null or an "empty" value,

whereas undefined is a global property that represents the

primitive value undefined .

These types are sometimes interchangeable, so some developers

prefer specicity in distinguishing them:

undefined hasn't had a value yet

null had a value and doesn't anymore

OR

null is an empty value

undefined is a missing value

Go with whatever works for your way of thinking.

null
Let's focus on null real quick. There's really not much to it. It's

basically a placeholder for something with no value, but there's

a major caveat to null , and that is typeof null returns

'object' . This is a bug that has been around for so long that

xing it would cause too much code to break. So, if we want to

check if something is null we have to do the following:

var nothing = null

(!nothing && typeof nothing === 'object') // true

JavaScript evaluates anything in parentheses () . In the above

snippet we evaluate that nothing has no value, and it is of the

type object . If both these things are true, this expression will

evaluate to true , meaning our variable is null .

undened
Variables that have no value are undened. Variables that are

declared, but not assigned a value, are given the value and type

undefined . We can see calling typeof on such variables will

return 'undefined' .

var a

typeof a // 'undefined'

Similarly to undefined we might see undeclared , most likely in

the context of a ReferenceError . If something goes wrong in

your program, it will display an error. Errors are a large subject,

and so we will just peek at ReferenceError .

var a

console.log(a) // undefined

console.log(b) // ReferenceError: b is not defined

The language is not the most clear here, but we can see in the

above example that a logged undefined because we had

declared it, but left no assignment. Then we attempted to log the

variable b , and we got ReferenceError: b is not defined . This

is telling us that the program attempted to do something with

variable b , but it was not dened (undeclared), and it threw an

error. The term throw is often used around errors, and basically

just means log some details about what went wrong, so we can

hopefully use it for debugging and to x the issue. If you nd

yourself having good reason to avoid this error from throwing,

here is a solution:

// Safety check to avoid a ReferenceError for

undeclared.

// will error

if (DEBUGGER) console.log('Debugging started.')

// safe existence check

if (typeof DEBUGGER !== 'undefined')

console.log('Debugging started.')

// feature check for API

if (typeof yourFeature === 'undefined') yourFeature =

function(){/*...*/}

// or check the global object. window is the global in

browsers.

if (!window.yourFeature) yourFeature = function()

{/*...*/}

Here's a little bonus for the day. Don't sweat this one. It's not

very common, but neat to know about. JavaScript has a void

operator. It evaluates the given expression and then returns

undefined . void will void out any value, so the result is always

undefined . Note, this does not aect the original value.

var num = 999

console.log(void num) // undefined

console.log(num) // 999

Just remember that null and undefined represent 'non' or

empty values, and you'll be OK. We'll be at you with Objects and

Numbers this week. Thanks for joining, and see you then!

Seth Shober

Looking for work :)

http://sethshober.com/

Subscribe to Learn JS With Me
Get the latest posts delivered right to your inbox.

Share this post

  

