
When 'not' to use arrow functions
Dmitri Pavlutin | 06 Jun 2016

It is a pleasure to see the evolution of the programming language you code
every day. Learning from mistakes, searching for better implementation,
creating new features is what makes the progress from version to version.

This is happening to JavaScript these years, when ECMAScript 6 brings the
language to a new level of usability: arrow functions, classes and a lot more.
And this is great!

One of the most valuable new feature is the arrow function. There are
plenty of good articles that describe its context transparency and short
syntax. If you're new to ES6, take a start from reading about it.

But every medal has two sides. Often new features introduce some
confusion, one of which is the arrow functions misguided utilization.

This article guides through scenarios where you should bypass the arrow
function in favor of good old functions expressions or newer shorthand

 Menu

Try in JS Bin

method syntax. And take precautions with shortening, because it can aect
the code readability.

1. Dening methods on an object
In JavaScript the method is a function stored in a property of an object.
When calling the method, this becomes the object that method belongs to.

1a. Object literal
Since arrow function has a short syntax, it's inviting to use it for a method
denition. Let's take a try:

calculate.sum method is dened with an arrow function. But on
invocation calculate.sum() throws a TypeError, because this.array is
evaluated to undefined.
When invoking the method sum() on the calculate object, the context
still remains window. It happens because the arrow function binds the
context lexically with the window object.
Executing this.array is equivalent to window.array, which is undefined.

var calculate = {

 array: [1, 2, 3],

 sum: () => {

 console.log(this === window); // => true

 return this.array.reduce((result, item) => result + item);

 }

};

console.log(this === window); // => true

// Throws "TypeError: Cannot read property 'reduce' of undefined

calculate.sum();

Try in JS Bin

Try in JS Bin

Try in JS Bin

The solution is to use a function expression or shorthand syntax for method
denition (available in ECMAScript 6). In such case this is determined by
the invocation, but not by the enclosing context. Let's see the xed version:

var calculate = {

 array: [1, 2, 3],

 sum() {

 console.log(this === calculate); // => true

 return this.array.reduce((result, item) => result + item);

 }

};

calculate.sum(); // => 6

Because sum is a regular function, this on invocation of calculate.sum() is
the calculate object. this.array is the array reference, therefore the sum
of elements is calculated correctly: 6.

1b. Object prototype
The same rule applies when dening methods on a prototype object.
Instead of using an arrow function for dening sayCatName method, which
brings an incorrect context window:

function MyCat(name) {

 this.catName = name;

}

MyCat.prototype.sayCatName = () => {

 console.log(this === window); // => true

 return this.catName;

};

var cat = new MyCat('Mew');

cat.sayCatName(); // => undefined

use the old school function expression:

Try in JS Bin

function MyCat(name) {

 this.catName = name;

}

MyCat.prototype.sayCatName = function() {

 console.log(this === cat); // => true

 return this.catName;

};

var cat = new MyCat('Mew');

cat.sayCatName(); // => 'Mew'

sayCatName regular function is changing the context to cat object when
called as a method: cat.sayCatName().

2. Callback functions with dynamic context
this in JavaScript is a powerful feature. It allows to change the context
depending on the way a function is called. Frequently the context is the
target object on which invocation happens, making the code more natural.
It says like "something is happening with this object".

However the arrow function binds the context statically on declaration and
is not possible to make it dynamic. It's the other side of the medal in a
situation when lexical this is not necessary.

Attaching event listeners to DOM elements is a common task in client side
programming. An event triggers the handler function with this as the
target element. Handy usage of the dynamic context.

The following example is trying to use an arrow function for such a
handler:

var button = document.getElementById('myButton');

button.addEventListener('click', () => {

 console.log(this === window); // => true

Try in JS Bin

 this.innerHTML = 'Clicked button';

});

this is window in an arrow function that is dened in the global context.
When a click event happens, browser tries to invoke the handler function
with button context, but arrow function does not change its pre-dened
context.
this.innerHTML is equivalent to window.innerHTML and has no sense.

You have to apply a function expression, which allows to change this
depending on the target element:

var button = document.getElementById('myButton');

button.addEventListener('click', function() {

 console.log(this === button); // => true

 this.innerHTML = 'Clicked button';

});

When user clicks the button, this in the handler function is button. Thus
this.innerHTML = 'Clicked button' modies correctly the button text to
reect clicked status.

3. Invoking constructors
this in a construction invocation is the newly created object. When
executing new MyFunction(), the context of the constructor MyFunction is a
new object: this instanceof MyFunction === true.

Notice that an arrow function cannot be used as a constructor. JavaScript
implicitly prevents from doing that by throwing an exception.
Anyway this is setup from the enclosing context and is not the newly
created object. In other words, an arrow function constructor invocation
doesn't make sense and is ambiguous.
Let's see what happens if however trying to:

Try in JS Bin

Try in JS Bin

var Message = (text) => {

 this.text = text;

};

// Throws "TypeError: Message is not a constructor"

var helloMessage = new Message('Hello World!');

Executing new Message('Hello World!'), where Message is an arrow
function, JavaScript throws a TypeError that Message cannot be used as a
constructor.

I consider an ecient practice that ECMAScript 6 fails with verbose error
messages in such situations. Contrary to fail silently specic to previous
JavaScript versions.

The above example is xed using a function expression, which is the
correct way (including the function declaration) to create constructors:

var Message = function(text) {

 this.text = text;

};

var helloMessage = new Message('Hello World!');

console.log(helloMessage.text); // => 'Hello World!'

4. Too short syntax
The arrow function has a nice property of omitting the arguments
parenthesis (), block curly brackets {} and return if the function body has
one statement. This helps in writing very short functions.

My university professor of programming gives students an interesting task:
write the shortest function that counts the string length in C language. This
is a good approach to study and explore a new language.

Try in JS Bin

Try in JS Bin

Nevertheless in real world applications the code is read by many developers.
The shortest syntax is not always appropriate to help your colleague
understand the function on the y.

At some level the compressed function becomes dicult to read, so try not
to get into passion. Let's see an example:

multiply returns the multiplication result of two numbers or a closure tied
with rst parameter for later multiplication.
The function works nice and looks short. But it may be tough to
understand what it does from the rst look.

To make it more readable, it is possible to restore the optional curly braces
and return statement from the arrow function or use a regular function:

function multiply(a, b) {

 if (b === undefined) {

 return function(b) {

 return a * b;

 }

 }

 return a * b;

}

let double = multiply(2);

double(3); // => 6

multiply(2, 3); // => 6

It is good to nd a balance between short and verbose to make your
JavaScript straightforward.

let multiply = (a, b) => b === undefined ? b => a * b : a * b;

let double = multiply(2);

double(3); // => 6

multiply(2, 3); // => 6

javascript arrow function constructor

invocation ecmascript-2015

5. Conclusion
Without doubt the arrow function is a great addition. When used correctly
it brings simplicity in places where earlier you had to use .bind() or trying
to catch the context. It also makes the code lighter.

Advantages in some situations brings disadvantages in others. You can't use
an arrow function when a dynamic context is required: dening methods,
create objects with constructors, get the target from this when handling
events.

Popular articles Recent articles
6 ways to declare JavaScript
functions

Gentle explanation of 'this' keyword
in JavaScript

How three dots changed JavaScript

When 'not' to use arrow functions

An easy guide to object rest/spread
properties in JavaScript

7 architectural attributes of a reliable
React component

7 tips to handle undened in
JavaScript

Dmitri Pavlutin
Hi! I'm a Frontend developer who enjoys JavaScript and React.
Being an avid learner, I consider a day without new knowledge is
a lost day.

