
HOME  SUBSCRIBE

Storing (small) Images in
MongoDB
24 MARCH 2015

The question of if and how to store images in MongoDB keeps

popping up on StackOverow and newsgroups. The two standard

answers are "Yeah, use GridFS..." or "No, don't store Images in the

Database". But GridFS is cracking a nut with a sledgehammer and

storing a large number of les in the le system doesn't

(usually) come with replication, backup or versioning. Let's

explore a simple alternative.

"Images belong in the le
system"
Raw image data is neither structured nor searchable anyway, so

at les will do just as well as a database, with less overhead.

That approach still requires the database to store the path to the

image, or a convention on how database items and lenames are

related. The advantage of this approach is that the static le can

be delivered by the web server directly, bypassing your server-

side code, database connections and what not. But we'll get back

to that.

However, your typical IaaS-Server usually doesn't come with a

pre-congured distributed le system that supports replication

and centralized backup - features that you hopefully have in

place for your MongoDB already. Also, storing images in the le

system isn't trivial at all, because dierent le systems respond

very dierently to folders with a very large number of les. We

often need to introduce a convention-based directory structure

such as /a4/bf/a4bfafcd831cbf1325.jpg to keep individual

folders from growing too large.

Replication, backup, concurrency and limitations for folder sizes and

le names aren't fun to deal with

Thread Hogs?
Another argument is you'll want to avoid running through your

entire backend stack for the delivery of static les which hogs up

your precious web server threads for operations that are I/O

bound. Then again, since the advent of node.js, where a single

thread through asynchronous I/O can serve a lot of clients

concurrently with comparatively little resources, so this is no

longer a much a concern.

Other platforms such as .NET 4.5 now come with aysnchronous

I/O, a set of frameworks that implement it and syntactic sugar

on top, too. The server model is still multi-threaded and very

dierent from node.js unlike node.js, but I/O bound async

operations don't force threads to idle anymore.

Sure, there's still overhead, and this would certainly not work

for the likes of facebook, but compared to setting up and

maintaining another technology for replication and backup, this

is often a good deal. Also, if the images can be cached by proxies,

good caching headers and ETags with a CDN or reverse proxy

will probably eliminate most of the requests anyway which

highlights the importance of better and easier management vs.

low-overhead delivery.

"Use GridFS"
That's another standard answer, and it usually comes with little

knowledge of GridFS. First of all, GridFS is not some kind of

fancy MongoDB feature that was built into the core of Mongo to

replace le systems. GridFS is a mere data model convention

which makes it possible to supply some simple tools to help

interact with data stored according to that convention. But let's

look at this in detail. We'll store a slightly larger version of this

image:

The larger version is called large.jpg and is about 380kB in size.

Let's upload this to MongoDB using the mongofiles tool and look

at the DB:

C:\MongoDB\bin>mongofiles put large.jpg

2015-03-06T01:34:26.841+0100 connected to: localhost

added file: large.jpg

C:\MongoDB\bin>mongo

connecting to: test

> show collections

fs.chunks

fs.files

system.indexes

Ok, so we now see two collections, called fs.files and

fs.chunks . Again, these are just regular collections. Peeking

inside, we nd:

> db.fs.files.find().pretty();

{

 "_id" : ObjectId("54f8f61296fd731660000001"),

 "chunkSize" : 261120,

 "uploadDate" : ISODate("2015-03-

06T00:34:26.949Z"),

 "length" : 380744,

 "md5" : "02fb7cae77c617132f149dfd82ed91c1",

 "filename" : "large.jpg"

}

Nothing fancy. But where's the data? Now, if we do

db.fs.chunks.find().pretty() , we basically see pages and pages

of this:

fdoFFFAxaD0oopdQY3/GnyUUU0AidKB0/GiigA70dqKKnoAi/d

AtDdqKKBLqH+NN/ioopvcrsL2pKKKEIB3pB/SiigQL3oX71FFA

UUUUyQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi

ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo

CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA//ooAKF

Ok, that looks like the actual data. Let's exclude that eld so we

can see the rest of the document clearly:

> db.fs.chunks.find({}, {"data": 0}).pretty();

{

 "_id" : ObjectId("54f8f61296fd731660000002"),

 "files_id" :

ObjectId("54f8f61296fd731660000001"),

 "n" : 0

}

{

 "_id" : ObjectId("54f8f61296fd731660000003"),

 "files_id" :

ObjectId("54f8f61296fd731660000001"),

 "n" : 1

}

So we see we have two documents here, both pointing to the

same fs.files through their files_id . The value of n species

the ordering of the chunks so the data doesn't get messed up -

that's the GridFS convention, nothing more.

Chunking
Besides working around MongoDB's document size limit of

16MB, the idea of chunking is to allow streaming, i.e. allow users

to download (or stream) a le without having the server to store

the whole thing in RAM at any point in time. Imagine the le is a

2.6GB HD video where that'd be really pointless. The default

chunk size of GridFS is 256kB which is supposedly a good

compromise of overhead (more queries to the database) and

little memory use, but it can be congured.

But what does that mean for small images? At only 380kB,

streaming hardly makes sense, and delivering our image will

require three round-trips to the database instead of one: One to

nd the fs.files document, and two to get the chunks. Even if

we increased the chunk size, we'd still need two round-trips

before we can even start to deliver the le.

A Simple Alternative
As we have seen, there's nothing special about GridFS, so for

small les, we can basically just merge the contents of the

fs.files and fs.chunks collections, like so:

{

 "_id" : ObjectId("54f8f61296fd731660000001"),

 "data" : BinData(2, "AAFC342..."),

 "length" : 380744,

 "md5" : "02fb7cae77c617132f149dfd82ed91c1"

}

This eliminates two of the three round-trips to the database and

increases the amount of required RAM only marginally, as long

as images are reasonably small. This might not be the best

approach for storing large images, but for your typical user

thumbnail, it's certainly a viable alternative.

Pros

Centralized: only one backup / replication strategy

Can be used for images that need authorization / tracking /

statistics

Asynchronous I/O, e.g. via node.js or .NET 4.5 frees you from

thread hogs

Cons

Extra overhead - le systems are fast

Might incur overhead because of the server stack

