
Clone this wiki locally

Securing Production Config Files
Steve Hord edited this page on 25 Jan · 3 revisions

Introduction

Steps

Initial Setup

Git‑crypt Workflow

Mimicking production mode

Deployment Servers, Build Servers, CI Servers

Git Clone Once Only

Git Clone Every Time

Introduction

Once you have split out your production config, you may want to encrypt any files that contain
sensitive information (API Keys, passwords etc). This page will get you started with git‑crypt ,
which works well with node‑config. With git‑crypt, you can keep your production config files
under version control with git, while also keeping them secure via encryption.

Here is the scenario we'll be configuring:

You, Paul and Ringo are all working on a project, using git. There are server deployments
involved.

Ringo is a contributor, and doesn't need or want to see production passwords, API secret

keys etc.

You and Paul both maintain the servers and need access to the sensitive info.

Prerequisites:

git‑crypt is installed.

On OS X : brew install git-crypt

On Ubuntu / Debian (since 16.04 LTS) sudo apt-get install git-crypt
On other systems: https://github.com/AGWA/git‑crypt/blob/master/INSTALL.md

Your project is using git, your working copy is clean, and you haven't committed any
sensitive information to it yet.

If you have accidentally committed sensitive information to your repository, you'll need
to clean it using bfg repo cleaner.

You have GnuPG installed.

On OS X, the GPG Keychain that is part of GPG Suite is very easy to use.

On Windows, GPG4Win looks pretty good.

On Unix/Linux, GPA provides a front‑end.

You have a config folder where your configuration files will be kept.

Steps

Initial Setup

We're going to set up git‑crypt so that the production.json file is encrypted for Ringo, but the
same file is plain JSON for yourself and Paul.

1. Initialise the repository to use git‑crypt

git-crypt init

2. Add your own public GPG key (already on your GPG keychain) as a trusted user

git-crypt add-gpg-user john@example.com

lorenwest / node‑config

Edit New Page

 Pages 22

Home

Altering configuration values

for testing at runtime

Command Line Overrides

Common Usage

Community Utilities

Configuration Files

Configuring from a DB

Configuring from an External

Source

Environment Variables

Examining Configuration

Sources

External Configuration

Management Tools

Future Compatibility

Multiple Node Instances

Plugins

Reserved Words

Show 7 more pages…

Find a Page…

 Add a custom sidebar

https://github.com/lorenw

 Clone in Desktop

https://github.com/lorenwest/node-config/wiki/Securing-Production-Config-Files/_history
https://github.com/AGWA/git-crypt
https://github.com/AGWA/git-crypt.git
https://github.com/lorenwest/node-config/wiki/Securing-Production-Config-Files
https://rtyley.github.io/bfg-repo-cleaner/
https://www.gnupg.org/
https://gpgtools.org/gpgsuite.html
https://www.gpg4win.org/
https://www.gnupg.org/related_software/gpa/index.html
https://github.com/lorenwest
https://github.com/lorenwest/node-config
https://github.com/lorenwest/node-config/wiki/Securing-Production-Config-Files/_edit
https://github.com/lorenwest/node-config/wiki/_new
https://github.com/lorenwest/node-config/wiki
https://github.com/lorenwest/node-config/wiki/Altering-configuration-values-for-testing-at-runtime
https://github.com/lorenwest/node-config/wiki/Command-Line-Overrides
https://github.com/lorenwest/node-config/wiki/Common-Usage
https://github.com/lorenwest/node-config/wiki/Community-Utilities
https://github.com/lorenwest/node-config/wiki/Configuration-Files
https://github.com/lorenwest/node-config/wiki/Configuring-from-a-DB
https://github.com/lorenwest/node-config/wiki/Configuring-from-an-External-Source
https://github.com/lorenwest/node-config/wiki/Environment-Variables
https://github.com/lorenwest/node-config/wiki/Examining-Configuration-Sources
https://github.com/lorenwest/node-config/wiki/External-Configuration-Management-Tools
https://github.com/lorenwest/node-config/wiki/Future-Compatibility
https://github.com/lorenwest/node-config/wiki/Multiple-Node-Instances
https://github.com/lorenwest/node-config/wiki/Plugins
https://github.com/lorenwest/node-config/wiki/Reserved-Words
https://github.com/lorenwest/node-config/wiki/_new?wiki%5Bname%5D=_Sidebar
x-github-client://openRepo/https://github.com/lorenwest/node-config.wiki

3. Import Paul's public GPG key to your own GPG keychain (Paul probably emailed this to You)

gpg --import Paul_pub.gpg

4. Mark both your own key and Paul's key with 'ultimate' trust in GPG.

gpg --edit john@example.com (or) gpg --edit-key john@example.com
gpg> trust

 Please decide how far you trust this user to correctly verify other
users' keys
(by looking at passports, checking fingerprints from different sources, etc.)

 1 = I don't know or won't say
 2 = I do NOT trust
 3 = I trust marginally
 4 = I trust fully
 5 = I trust ultimately
 m = back to the main menu

Your decision? 5
Do you really want to set this key to ultimate trust? (y/N) y

Do the same for paul@example.com

5. Add Paul's public GPG key as a trusted git‑crypt user

git-crypt add-gpg-user paul@example.com

6. Add the config/production.json file (or equivalent YAML etc) to the .gitattributes
file , so git‑crypt will manage the encryption / decryption where necessary. Add the
following line to the .gitattributes file (substituting the appropriate extension):

config/production.json filter=git-crypt diff=git-crypt

7. Now create the file and add it to your repo (substituting the appropriate syntax and
extension):

echo '{foo:"secret"}' > config/production.json
git add config/production.json
git commit -m "production settings"
git push origin

On the git remote (server), config/production.json is now encrypted.

Git‑crypt Workflow

Initially, when Paul clones or pulls the repo, config/production.json is encrypted for him too.

But his public key is listed as trusted, and he has the corresponding private key on his keyring.
So he can unlock all encrypted files with a single command:

git-crypt unlock

Paul is prompted for his private key password.

From now on, Paul's and your own workflow is unchanged from normal.

On your machine and Paul's, config/production.json is just a normal JSON file.

From Ringo's point of view, config/production.json is a binary file.

Mimicking production mode

Ringo might have the need to run the application with NODE_ENV=production e.g. to invoke

minification, or to debug some issue on the production server.

But Ringo has a problem: when he runs the node program with NODE_ENV=production , node‑
config tries to read config/production.json , which on his machine is not a valid JSON file

since it's encrypted. The app crashes.

To cater for this, Ringo can specify that any git‑crypt encrypted files are skipped, via a
CONFIG_SKIP_GITCRYPT environment variable, for example:

NODE_ENV=production CONFIG_SKIP_GITCRYPT=1 node foo.js

This tells node‑config to continue even if a git‑crypt file is encountered.

Deployment Servers, Build Servers, CI Servers

Git Clone Once Only

Unless you're cloning the git repository every time, you need only unlock it once.

You can create a GPG key for a server (or set of servers) so a single git-crypt unlock
command is all that is needed. Of course, the corresponding private key must be installed on the
server's GPG keychain already.

Git Clone Every Time

In the case where your server is performing a git clone every time, you can instead export a
symmetric (non‑GPG) key from an unlocked git‑crypt repository:

git-crypt export-key ~/Desktop/git-crypt-key

You can then use that symmetric key to unlock the repository from your server without a pass

phrase.

git-crypt unlock /path/to/git-crypt-key

Copyright (c) 2010‑2017 Loren West and other contributors

https://github.com/lorenwest/node-config#contributors
https://github.com/lorenwest/node-config/wiki/_Footer/_edit

