
BY CHRIS COYIER ON AUGUST 14, 2012
CSS, SASS

Don’t Overthink It Grids

The vast majority of websites out there use a grid. They may not explicitly have a grid system in

place, but if they have a "main content area" floated to the left a "sidebar" floated to the right, it's

a simple grid.

If a more complex layout presents itself, people often reach for a grid framework. They assume

grids are these super difficult things best left to super CSS nerds. That idea is perpetuated by the

fact that a lot of the grid systems they reach for are very complicated.

Note that this article was published in 2012. Floats was still the primary method for a grid

system, and this article focuses on really simple methods for that, like just floating four

25% elements and not getting crazy with math and exotic gutter systems. These days, I'd

highly recommend using CSS grid or flexbox for your grid system, if you even need to

create an abstracted grid at all. It's arguably even easier and definitely more flexible and

powerful.

Here's how I build grids. It's not hard or complicated. Even making them flexible is no big deal.

Context
A block level element is as wide as the parent it's inside (). We can think of it as

100% wide. The wrapper for a grid probably don't have much to do with semantics, it's just a

generic wrapper, so a is fine.

HEY!

width: auto;

div

<div class="grid">

 <!-- 100% wide -->

</div>

HTML

Columns
Let's start with a practical and common need: a main content area being 2/3 the width and a

sidebar being 1/3 the width. We just make two column divs with appropriate class names.

To make them next to each other, we just need to float them and apply widths. We can select

both like this:

and individual width like this:

<div class="grid">

 <div class="col-2-3">

 Main Content

 </div>

 <div class="col-1-3">

 Sidebar

 </div>

</div>

HTML

[class*='col-'] {

 float: left;

}

CSS

That's the whole premise of not overthinking grids.

Clearing Context
The parent element will collapse to zero height since it has only floated children. Let's fix that by

clearing it. These days all you need is this:

Gutters
The hardest part about grids is gutters. So far we've made our grid flexible by using percentages

for widths. We could make the math all complicated and use percentages for gutters as well, but

personally I don't like percentage gutters anyway, I like fixed pixel size gutters. Plus, we're trying

to keep too much thinking out of this.

The first step toward this is using . I like using it on absolutely

everything.

.col-2-3 {

 width: 66.66%;

}

.col-1-3 {

 width: 33.33%;

}

CSS

.grid:after {

 content: "";

 display: table;

 clear: both;

}

CSS

box-sizing: border-box;

*, *:after, *:before {

 -webkit-box-sizing: border-box;

 -moz-box-sizing: border-box;

CSS

Now when we set a width, that element stays that width, despite padding or borders being

applied.

The second step is applying a fixed padding to the right side of all columns except the last one.

That's all there is to basic gutters.

Outside Gutters
Need gutters on the outside? I like using an opt‑in class for this:

Step one is to add left padding to the grid parent (and optionally top and bottom padding):

 box-sizing: border-box;

}

[class*='col-'] {

 padding-right: 20px;

}

[class*='col-']:last-of-type {

 padding-right: 0;

}

CSS

<div class="grid grid-pad">

 Grid with outside gutters also

</div>

HTML

.grid-pad {

 padding: 20px 0 20px 20px;

}

CSS

Step two is to restore the right padding to the last column:

More Column Choices
Super easy:

Do whatever you want. Just make sure the column fractions add up to 1. Yeah, a little thinking,

but easier than usual.

Sass
I'm not using it heavily here, but the whole bit becomes even a bit more succinct with

SCSS/Compass:

.grid-pad > [class*='col-']:last-of-type {

 padding-right: 20px;

}

CSS

.col-1-2 {

 width: 50%;

}

.col-1-4 {

 width: 25%;

}

.col-1-8 {

 width: 12.5%;

}

CSS

* {

 @include box-sizing(border-box);

}

$pad: 20px;

.grid {

 background: white;

 margin: 0 0 $pad 0;

 &:after {

 /* Or @extend clearfix */

 content: "";

 display: table;

 clear: both;

 }

}

[class*='col-'] {

 float: left;

 padding-right: $pad;

 .grid &:last-of-type {

 padding-right: 0;

 }

}

.col-2-3 {

 width: 66.66%;

}

.col-1-3 {

 width: 33.33%;

}

.col-1-2 {

 width: 50%;

}

.col-1-4 {

SCSS

Modules
I like to work within these grids with "modules".

 width: 25%;

}

.col-1-8 {

 width: 12.5%;

}

/* Opt-in outside padding */

.grid-pad {

 padding: $pad 0 $pad $pad;

 [class*='col-']:last-of-type {

 padding-right: $pad;

 }

}

<div class="grid">

 <div class="col-2-3">

 <article class="module">

 stuff

 </article>

 <article class="module">

 stuff

 </article>

 </div>

 <div class="col-1-3">

 <aside class="module">

 Sidebar stuff. Sub modules?

 </aside>

 </div>

</div>

HTML

It feels nice breaking up content into bits this way. The bonus side effect being that each module

can have padding of it's own, keeping text away from the edges of the grid.

Result
Here's a demo on CodePen.

Browser Whatnot
Works just great in IE 8 and up and all the other standard stuff. If you need IE 7 support, you'll

have to do something else =).

Also, Flexbox is going to make this even easier and better (in various ways, including reordering

on demand), but I think we need about a year until we can start to think about using it.

Related
Check out OOCSS grids.

Related

Comments

eQRoeil
AUGUST 14, 2012

There is a polyfill for box‑sizing https://github.com/Schepp/box‑sizing‑polyfill

Source @goetter http://www.knacss.com/ (same grid with float and other option with table‑

cell)

Paweł P.
AUGUST 15, 2012

Hmmm… Interesting!

Ramveer
AUGUST 15, 2012

Nice

Patrick Laughlin
AUGUST 21, 2012

Or you could use a mixin if you’re into that kinda thing. I’m sure this could be written

better. =)

@mixin box-model($max_height: auto, $max_width: auto,

 $plength: length($padding);

 @if $plength == 4 {

 $ptop: nth($padding, 1);

 $pright: if($plength >= 2, nth($padding, 2), $

 $pbottom: if($plength >= 3, nth($padding, 3),

 $pleft: if($plength >= 4, nth($padding, 4), $p

 }

 @if type-of($max_height) == number { height: $max_

 padding: $ptop $pright $pbottom $pleft;

 @if type-of($max_width) == number { width: $max_wi

}

arf_root
AUGUST 14, 2012

What I wonder about this example, and a lot of the grid frameworks, is the side effects of the

naming scheme. In this example you have a bunch of class names that effectively have the

presentation encoded into their names (col‑1‑3, col‑2‑3, etc). What happens when you have

to create a new stylesheet for a user agent with a much narrower screen? Now you have class

names that make no semantic sense… ‘col‑1‑3’ might be 100% width.

Class naming is always a constant battle for me. When I try going ivory tower, pure semantic

names I end up with a bunch of classes/ids that are so generic the stylesheet is impossible

to interpret.

Atimoda
AUGUST 14, 2012

You dont need to use these names, you can use your own semantic class name, like

“menu” and “entries”, and then you set in css how large are the columns of everything,

like:

this is the way i use it to keep html semantic.

.col-1-3,

.menu,

.sidebar { width: 33%; }

.col-2-3,

.entries,

.comments { width: 66%; }

.col-3-3,

.header,

.footer { width: 100%; }

Chris Coyier
AUGUST 14, 2012

Which is a classic use case of @extend =)

Balazs Sziklai
AUGUST 15, 2012

@Chris Exactly!

I have no problems shoving non‑semantic class names into my markup but if you itchy

about that just extend your semantic class/id to the grid class in sass.

header{

 padding: 1em 0;

 @extend .col-3-3;

}

AntoxaGray
AUGUST 15, 2012

I never been confused that all grid classes on mobile have 100% width. Well… because

they are all 100%?

Joe Snell
AUGUST 17, 2012

Uhm, hello! First I’ve seen @extend with SASS…. where have I been?! Going to deploy

now! Thanks!

Matt Copeland
AUGUST 20, 2012

@joe be careful with @extend if you’re using media queries.

Gotchas:

http://designshack.net/articles/css/sass‑and‑media‑queries‑what‑you‑can‑and‑

cant‑do/

SASS 3.2 media queries and @extend:

http://thesassway.com/intermediate/responsive‑web‑design‑in‑sass‑using‑media‑

queries‑in‑sass‑32

Eelco
SEPTEMBER 23, 2012

Problem with @extend here is that it won’t use “[class*=’col‑‘]”. So you’ll be missing

your “float: left;”. Just a quick heads up.

Kevin
SEPTEMBER 29, 2012

Wouldn’t the new %placeholder syntax have great use here to not include the column

classmates in your code but continue utilize them to ensure you’re adhering to your

grid (assuming you don’t need to dynamically create columns for the purposes of the

site you’re using the grid for, though you can still use the classnames and just create

the equivalent %placeholder) to lower the number of selectors you use on your

stylesheet significantly?

Ryan
AUGUST 14, 2012

Grid systems that depend on specific (and often overly verbose) HTML drive me nuts. I am

pretty hardcore in the belief that all class names should be reflective of the type of data they

contain and that any layout driven code should strictly remain within the CSS file. However,

HTML grid systems completely undermine this and in a way remind me of the days back

when we used tables for layout.

Jim Houx
SEPTEMBER 23, 2012

I’m kind of newbie with this stuff, but the problem I see is that presentation and

content really aren’t 100% separable. What if I display same types of content differently

on different pages? Now I’ve got to define more selectors in the stylesheet for per‑

page cases. Whereas, if I’m just doing a unique page and I want to arrange content in a

certain way, I can use specific grid classes to do so right in the markup without having

to go pick apart a stylesheet. If you try to 100% abstract presentation from content,

what you’re targeting is only a subset of use cases. There’s no single solution for every

design problem.

Donald Allen
AUGUST 14, 2012

Is using *:after, *:before required? I’ve always used just *.

Chris Coyier
AUGUST 14, 2012

See: https://twitter.com/garazi/statuses/234076720595075072

jochem
AUGUST 14, 2012

Most grid systems arent any morercomplicated then this. Whats the difference between div‑

1‑3 / div‑2‑3 and span4 / span8 ? Basicly its the same. Except perhaps the pixel based

gutter.its just that most grid systems are merely a smaller part of a larger css framework.

But ive often just selected the items i needed and discarded everything else. The end effect

is the same though.

I’m curious though. I see a lot of people adding a similar clearfix to their css. Why ?Almost

everytime adding overflow hidden to the parent gets the same result without adding extra

content we dont need.

Jim Houx
SEPTEMBER 23, 2012

I wish someone had replied to jochem’s question. I was wondering the exact same

thing. Any help?

TheMilkman
NOVEMBER 28, 2013

adding overflow: hidden is a very easy and good way. but if you have some contents

that need to be displayed in an overlapping way and are markupped in the same box

(e.g. small layers/tooltips or validationbubbles), then you can’t use overflow: hidden.

cheers

Nicolas Gallagher
AUGUST 14, 2012

Nice post, Chris.

I’ve got a partially finished (Sass‑based) grid system that does some of these things, but

uses to get some pretty handy layout benefits, and it makes an attempt to

play well in the responsive design world – https://github.com/necolas/griddle

A few comments:

inline-block

[class*='col-'] {

 float: left;

}

This is a substring match, which means it’s not very robust. If you have any other class that

contains , then the styles end up applied there too. Generally, I prefer to avoid this

type of selector for components, especially in larger codebases.

Yeah, you can contain floats with just this code (you may as well use in

that case), but it results in different containment of top and bottom margins and

inconsistency with alternative float containment methods like . To avoid

both those issues, you still need the pseudo‑element too.

This isn’t so much of an issue in a grid component, but for general float containment, I’d

still recommend using .

Thanks.

col-

.grid:after {

 content: "";

 display: table;

 clear: both;

}

display: block

overflow: hidden

:before

:before

Chris Coyier
AUGUST 14, 2012

Thanks for the updates.

An alternative to could easily be just adding an additional class in

the HTML, e.g. . In my case I’m usually pretty intimate with

my whole code base so I’m cool with the single class name, but I’d agree in larger less

familiar group‑ish code bases the second class is better.

So do you recommend using both and ?

[class*='col-']

class="col col-1-3"

:before :after

Jim Houx
OCTOBER 2, 2012

Nicolas said: “for general float containment, I’d still recommend using :before.”

Re: You’re suggesting a float containment model that isn’t compatible with IE 7 and 8,

unless you intend on including the javascript hack that adds ‘before’ support for those

browsers, but I suspect you’d get unpredictable behavior.

I highly recommend sticking to backwards compatible methods for things like float

containment.

